

1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3

Part 2: Learning outcomes

1. Describe a range of methods that can be used to investigate numerical cognition in remote cultures and its interdependencies with language
2. To describe cultural influences on counting preferences and finger counting use \qquad
3. To evaluate the claim that "we cannot think about numerical quantities for which we have no words" \qquad
\qquad

4

(6. UNiverity.

Learning counting in European countries
\qquad

Base-10 system: Decimal number system, which \qquad arranges the digits 0-9 into units, tens and hundreds, and so on. \qquad

- Most logical counting systems use words that reflect the structure of this system and have regular, straightforward rules \qquad
- Link between fingers and counting
- E.g. recite the numerical chain, point to objects when counting, keep
track of items in mental calculation, and probably also to understand the base-10 system
\qquad
\qquad
5

. UNverity

Counting systems across the world

\qquad

- Wide range of counting systems across cultures, varying in line with the environmental needs, both physical and social situations
- Lancy (1978, 1983). Extensive survey of counting systems in New Guinea (225 languages)
- Four types of counting systems \qquad
- Type 1: Body-part tally system (12-68 body parts)
- Type 2: Tally system using counters (e.g., sticks). Base number btw $2 \& 5$
- Type 3: Mixed bases of 5 and 20 (e.g., $15=2$ hands and 1 foot!)
\qquad
- Type 4: Base 10 system with several discrete number names

7

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Counting is a culturally acquired technique

8

(5) UNIVERSITY

On language and arithmetic
\qquad

Three views \qquad

1. Human competence in arithmetic critically depends on language faculty (Chomsky, 1988)
2. Arithmetic independent of language (i.e., evolutionary ancient capacity shared with animals) (Dehaene (1997)
3. "Innately rooted" yet deeply transformed once children acquire a system of number symbols (Wiese 2003)

. $\begin{gathered}\text { GNiversiry } \\ \text { Grenilich }\end{gathered}$

Lessons from three indigenous populations \qquad

1. Piraha

- Gordon (2004)
- Frank et al. (2008)
\qquad
\qquad

2. Munduruku

- Pica et al. (2004) \qquad

3. Tsimane

- Piantadosi, Jara-Ettinger \& Gibson (2014) \qquad
\qquad
10

. Univeritiry

Number cognition without words?
\qquad

- Pirahã speakers
- Population of less than 200 living in small villages of 10 to 20 people
- Gordon (2004): evidence from three field trips (ranging from 1 week to 2 months), living with the Piraha
- Counting words: hói =1, hoí $=2$, baágiso = many

\qquad
\qquad
\qquad
\qquad
\qquad
11

. ${ }^{2}$ Unvergiry

Gordon (2004)

\qquad

- Sample: 7 Piraha villagers \qquad
- Matching task: Involves placing tokens in one-toone correspondence with individuals in group to be \qquad counted (i.e., analogous to counting)
- designed to require some combination of cognitive skills such as the need for memory, speed of encoding, and mental-spatial transformations
- Objects familiar to participants (and available to experimenters!): sticks, nuts, batteries

13

14

Frank, Everett, Fedorenko, \& Gibson (2008) \qquad

- sets of spools of thread
- $1,2,3, \ldots 10$ cond
- $10,9,8, \ldots .1$ cond
- Proportion
of hói, hoí,
and baágiso
produced by 6
Pirahã speakers

Frank, Everett, Fedorenko, \& Gibson (2008)

- Exp. 1: Words are much more likely to be relative or comparative terms (e.g. "few" or "fewer") than absolute terms like "one"
- Not likely to be proto-numbers (numerals with approximate quantities, like "roughly one," as suggested by Gordon, 2004)
- Using "roughly one" word to refer to 6 seems unlikely given how misleading it is
- Exp. 2: Non replication of the Piraha's poor on the exact matching task (effects of practice? instructions?)

16

- Another example of number cognition without words
- Speakers in Brazil with little exposure to education and measuring devices
- Only exact numbers for 1-5
- 3: eba pug $(2+1)$
- 4 ebadipdip $(2+1+1)$
- BUT eba ebadipdip meaningless
- 5+ : ‘some', 'many', etc

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
17
. ${ }^{2}$. Unverigry.
- Another example of number cognition without words
- Pica et al. (2004): Is exact vs. approximate calculation possible without numbers above 5?

18

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
19

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
20

21

23

(2) Cinturivy

Piantadosi, Jara-Ettinger \& Gibson (2014)

- the give-N task (Wynn, 1992)
- 1-knower: understands 1 , not 2
- 2-knower, understands 2, not 3
- No 5-knowers, i.e. children who understand $1-5$, but not $6,7,8$!

http://tedlab.mit.edu/culture cognition.html
Same stages of number learning as children in industrialized countries, just delayed a few years

24

Fi) UNIVERSITY

Summary and conclusions

- Evidence from less WEIRD people
- Considerable variety in the amount and usage of words and other procedures that indicate numerical quantities.
- Helps elucidates the relationship between language and arithmetic
- Effects of vocabulary size: Some evidence points to impaired exact calculations outside one's their number range (reliance on spared representation of large approximate numerosities)
- But note opposing findings: Important to consider truly ecological validity, sets of instructions, limited $n s$ etc.

.2 Unverity

Part 2 reading

- Frank, Everett, Fedorenko, \& Gibson (2008). Number as a cognitive technology: Evidence from Pirahã language and cognition. Cognition, 108 (3), 819-824
- Pica, P., Lemer, C., Izard, V., \& Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science 306(5695), 499-503.
- Wassman, J., \& Dasen, P. R. (1994). Yupno number system and counting Journal of Cross-Cultural Psychology, 25(1), 78-94 \qquad
26

