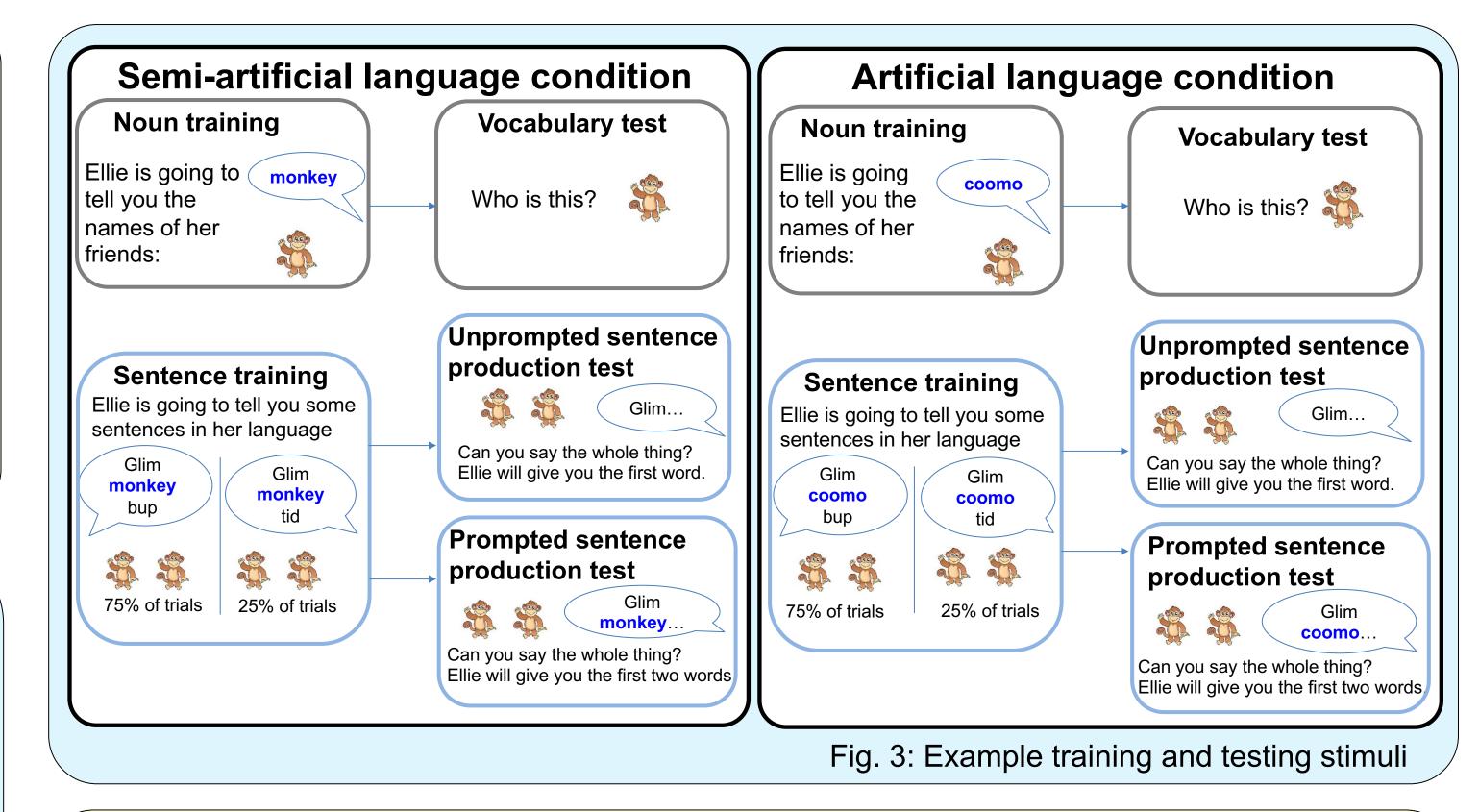
The role of memory constraints in regularization of unpredictable variation


Jo Saul¹, Anna Samara¹, Kenny Smith² & Elizabeth Wonnacott¹

¹ University College London; ² University of Edinburgh

Introduction

- Linguistic variation is usually conditioned on cues (i.e. predictable)
- Regularisation = removing variation from the input, generally by boosting the frequency of one variant
- In artificial language experiments where variation is unconditioned (unpredictable), speakers tend to regularize [1, 2]
- Children regularize more readily than adults, could this be due to their lower memory capacity? [1, 3]

Objectives

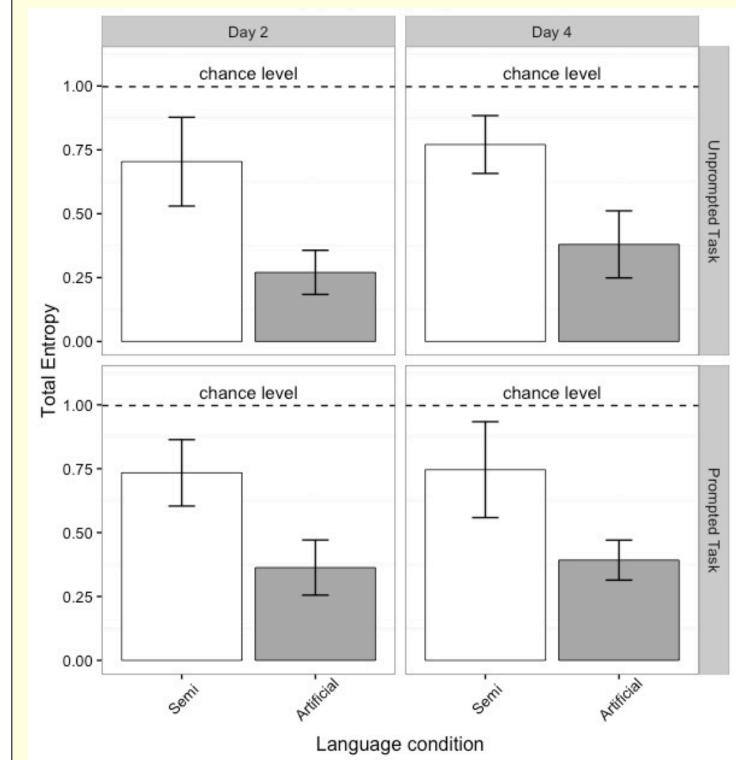
- 1. Compare child regularization effects in contrasting memory conditions: artificial and semi-artificial languages
- 2. In both conditions, investigate if regularization changes:
 - Over time
 - Depending on memory load of task
 - When generalising to novel stimuli
- 3. Relate working memory measures to individual differences in regularization

Methods

Participants

- 40 monolingual children from 2 schools (mean age: 6;3, SD: 0;3, 18 girls)
- Split into 2 equal groups matched on age and gender:
 - Semi-artificial condition \bullet
 - Artificial condition

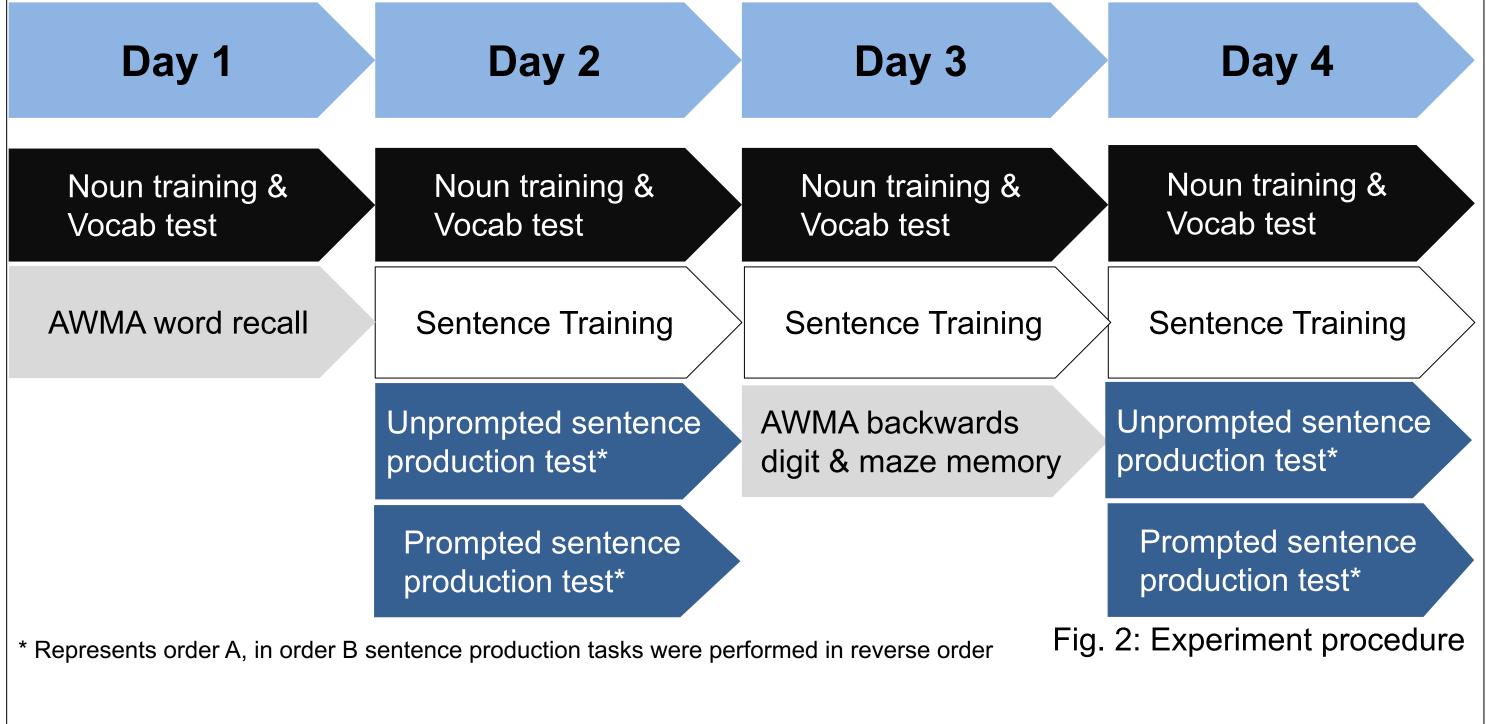
Materials


Two simple languages were created which differed only in the nouns they contained (see Fig. 1)

Results

- Vocab test confirmed that artificial language was sig. harder to learn than \bullet the semi-artificial one
- Entropy measure derived from each child's particle use pattern
- Entropy is a measure of systematicity regardless of the pattern imposed (e.g. if a child uses all det1 or all det2)

Entropy = $-\sum P(i) \log 2 P(i)$, where P(i) is the frequency of particle i in a participant's productions (low entropy = high regularization)


1. Lower entropy (=greater regularization) in artificial vs. semiartificial language, no sig. effect of time

2. Memory prompts did not sig. influence regularization (no effect of prompted vs. unprompted task)

Artificial	meaning "there	corresponding with animal pictures, e.g. "meeper", "panjol"	meaning, e.g. "bup", (
Semi-artificial	are two" Used to introduce each sentence	12 two-syllable English words, corresponding with animal pictures, e.g. "camel", "tiger"	Source of unpredictable variation (see below)		
Dracadura		Fig. 1:Artificial and semi-artific	ial language structure		

Procedure

Language training and testing took place over 4 sessions within 5 days at school 1:1 with experimenter, using a laptop and headphones, following schedule in Fig. 2

3. Word familiarity did not sig. influence regularization (no effect of old vs. new nouns in prompted task)

Fig. 4: total entropy by language, day and task, with 95% CI

4. Entropy correlated positively with backwards digit recall in the artificial language group = less regularization in children with stronger memory skills

Meas	sure	1	2	3	4	5	6	7			
Semi-artificial condition (n=20)											
1.	AWMA word	-	020	111	083	.101	.048	.157			
2.	AWMA maze		-	.515*	180	.042	151	.047			
3.	AWMA back. digit			-	131	.027	127	.073			
4.	Day 2 TE unprompt.				-	.524*	.878**	.175			
5.	Day 4 TE unprompt.					-	.578*	.867**			
6.	Day 2 TE prompt.						-	.317			
7.	Day 4 TE prompt.							-			
Artificial condition (n=20)											
1.	AWMA word	-	.447	.470*	.311	.010	.221	.296			
2.	AWMA maze		-	.503*	.250	169	.265	.163			
3.	AWMA back. digit			-	.469*	.269	.411	.501*			
4.	Day 2 TE unprompt.				-	.618**	.890**	.809**			
5.	Day 4 TE unprompt.					-	.573*	.770**			
6.	Day 2 TE prompt.						-	.815**			
7.	Day 4 TE prompt.							-			

Table 1: Pearson correlations total entropy vs. working memory

Discussion

- Language condition influenced regularization: when variation is unpredictable, child regularization susceptible to task manipulation
- No effect of day on regularization. May have emerged in longer experiment or if had an earlier baseline measure
- No effect of memory prompt. Possible that although the prompts supported the task, production was still difficult for children, whereas for adults prompt may have sig. effect [5] No effect of noun type on regularization. Previous contrary findings for \bullet adults [6] and children [2] may have been due to retrieval pressures of remembering new nouns, which did not apply here due to task design

Language Training

- Participants were told they would be learning Ellie the Elephant's language
- Each day they were trained on the same 4 individual nouns (the old nouns)
- For each noun, 75% of training sentences contained **Particle 1** and 25% of sentences contained **Particle 2**
- Thus particle use varied unpredictably (see Fig. 3 for examples)

Language Testing

- Sentence production was tested on Days 2 and 4 in two separate tasks: unprompted and prompted production (see Fig. 3 for examples)
- In the prompted task, both old and new nouns were tested

Working memory measures: Word recall, maze memory and backwards digit recall tests from Automated Working Memory Assessment [4]

- Working memory is implicated in regularization of unpredictable variation in the lab, however additional constraints may also be present when such variation occurs in natural learning situations
- Further investigation is needed to dissociate the mechanisms of encoding and retrieval for child learners

References:

[1] Hudson Kam, C. L., & Newport, E. (2005). Language Learning and Development, 1 (2005), pp. 151-195 [2] Samara, A., Smith, K., Brown, H., & Wonnacott, L. (2017). Cognitive Psychology, 94, 85-114. [3] Perfors, A. (2012). Journal of Memory and Language, 67, 486–506. [4] Alloway, T. P. (2007). Automated Working Memory Assessment. London: Harcourt Assessment. [5] Hudson Kam, C. L., & Chang, A. (2009). Journal of Experimental Psychology, 35(3), 815–821. [6] Wonnacott, E., & Newport, E. L. (2005). In A. Brugos, M. Clark-Cotton, & S. Ha (Eds.), BUCLD 29: Proceedings of the 29th Annual Boston University Conference on Language Development. Somerville, MA: Cascadilla Press. 1-11.